Water quality investigations at Lake Merritt in Oakland, California
Gwendolyn Carter, Catherine Casino, Krystal Johnson, Judy Huang, Ai-vy Le, Victor M. Truisi, Darolyn Turner, Fred Yanez, Jin Feng Yu, Miguel Unigarro, Gail Vue, LaKisha Gardu�o, and Kevin Cuff
Lake Merritt is a saltwater tidal lagoon that forms a portion of a wildlife refuge in downtown Oakland, California. The general area was designated as the nation’s first wildlife refuge in 1869, and is currently the home to over 90 species of migrating waterfowl, as well as a variety of aquatic wildlife. Situated within an area composed of compacted marine sediment located near the center of Oakland, Lake Merritt also serves as a major local catchment basin, receiving significant urban runoff from a 4,650 acre local watershed through 60 storm drains and four culverted creeks. Due to factors related to its geographical location, Lake Merritt has suffered from poor water quality at various times throughout its history. In fact, in May of 1999 the US Environmental Protection Agency designated Lake Merritt as a body of water whose beneficial uses are impaired, mainly due to high levels of trash and low levels of dissolved oxygen. As a contribution to continuing efforts to monitor and assess water quality of the Lake, we began a water quality investigation during the Summer of 2005, which included the measurement of dissolved oxygen concentrations of samples collected near its surface at over 85 different locations. These measurements were made using a sensor attached to a PASCO data- logger. The sensor measures the electric current produced by a chemical reaction in its probe, which is composed of a platinum cathode and a silver anode surrounded by an electrolyte solution. Results of these measurements were statistically analyzed, mapped, and then used in assessing the quality of Lake Merritt’s water, particularly in relation to supporting aquatic biota. Preliminary analysis of results obtained so far indicates that the highest quality waters in Lake Merritt occur in areas that are closest to a source of San Francisco Bay water, as well as those areas nearby where water circulation is robust. Significantly high levels of dissolved oxygen were measured in an area that has the greatest number and diversity of organisms as indicated through visual observation, which is located where marine waters flow directly into the Lake. In addition, high levels of dissolved oxygen were measured at two sites along an approximately 500 meters stretch of the Lake’s eastern shoreline, where swift moving currents were observed. Dissolved oxygen levels were lowest in areas where storm drain runoff waters flow into the Lake, as well as those that include trash-filled, stagnant sections. Overall, our work has generated information that may be used to better understand important factors that affect Lake Merritt’s water quality. Such studies should be continued in the future and used to help maintain a healthy ecosystem in and around Lake Merritt.